Navy Additive Manufacturing (AM): Adding Parts, Subtracting Steps – 3D Printing, Tooling, Aerospace, Binder Jetting, Directed Energy Deposition, Material Extrusion, Powder Fusion, Photopolymerization

This report examines additive manufacturing (AM) and describes its potential impact on the Navy’s Supply Chain Management processes. Included in the analysis is the implementation of 3D printing technology and how it could impact the Navy’s future procurement processes, specifically based on a conducted analysis of the automotive aerospace industry. Industry research and development has identified multiple dimensions of AM technology, including material variety, cost saving advantages, and lead-time minimizations for manufacturing products. This project is designed to provide the Navy with a recommendation based on an in-depth industry case-study analysis. CHAPTER I * INTRODUCTION * A. OVERVIEW * B. REPORT ORGANIZATION * CHAPTER II * LITERATURE REVIEW * A. ADDITIVE MANUFACTURING HISTORY * B. ADDITIVE MANUFACTURING OVERVIEW * C. ADDITIVE MANUFACTURING PROCESSES AND METHODS * 1. Binder Jetting * 2. Directed Energy Deposition * 3. Material Extrusion * 4. Material Jetting * 5. Powder Bed Fusion * 6. Sheet Lamination * 7. Vat Photopolymerization * D. ADDITIVE MANUFACTURING USES AND BENEFITS * E. ADDITIVE MANUFACTURING CHALLENGES, ISSUES, AND CONCERNS * F. NAVY PROCUREMENT PROCESS * G. SUMMARY * CHAPTER III * METHODOLOGY * A. MULTIPLE CASE-STUDY ANALYSIS * B. IMPLEMENTATION * C. SUMMARY * CHAPTER IV * CASE ANALYSIS * A. BIG INDUSTRY: ADDITIVE MANUFACTURING IN AVIATION AND AUTOMOTIVE MANUFACTURING * 1. Automotive Industry * a. General Motors Financial Troubles * b. Costs * c. Additive Manufacturing in Tooling Process * d. Application in Production of Parts * 2. Aerospace Industry * 3. Boeing Aviation Corporation * 4. Additive Manufacturing Developments * B. CONCLUSIONS * CHAPTER V * IMPLEMENTATION * A. INDUSTRY APPLICATIONS * B. MILITARY APPLICATIONS * C. IMPLEMENTATION PROCESS AND CRITERIA * D. MILITARY ISSUES WITH AM * 1. Parts Testing and Certification * 2. Information Security * 3. Intellectual Property Infringement * 4. Personnel Training and Skill Set Development * E. ADDITIVE MANUFACTURING PROCESSES DEPLOYED * CHAPTER VI * CONCLUSION * A. SUMMARY

Check Out Our Website For Details…

Dubai aims to be the global center of clean energy by 2050

Dubai Attorney General Essam Al Humaidan said that the humanitarian gesture reflects His Highness Sheikh Mohammed’s keenness to give the prisoners the opportunity to follow the right path and start a new life with their families, according to UAE News Agency (WAM).

The wide-ranging Dubai Clean Energy Strategy 2050 program is expected to result in Dollars 13.6 billion worth of new solar investments, the Middle East Solar Industry Association (MESIA) announced.

The UAE, a major oil supplier, has one of the highest water consumption per capita rate in the world.

He added: “Every investment in the development of clean energy sources is at the same time an investment to protect the environment for future generations”. He called on worldwide companies and R&D centres to make Dubai a base for testing and applying the next generation of clean energy technologies to create a global model that can benefit the world.

The Dubai Clean Energy Strategy aims to provide 7 per cent of Dubai’s energy from clean energy sources by 2020. These objectives speed the pace of the emirate’s transition from a previous 15% target for 2030 set in January of this year. The second phase will begin operations in April 2017 with a capacity of 800 MW, the third phase will begin operations in 2020 with a capacity of 1000 MW, while the fourth phase will begin operations in 2030 with a capacity of 5000 MW, which is 25% of the total energy production in the emirate of Dubai as estimated.

The DGZ will also include an Innovation Centre which will be built using 3D printing technology. The innovation centre features research and development centres specialised in the next generation of clean energy technologies such as solar energy technology test centre, drones research centre, 3D printing technology, and solar energy based desalination tests centre.

Dubai plans Dh500 million of investment in research into areas such as integration of smart power grids and energy efficiency.

A free trade zone, the Dubai Green Zone, will also be established to encourage clean technology firms to move to the city.

Dubai will spend billions of dollars on generating clean energy, the government said on Saturday, aiming to have solar panels installed on the roofs of all buildings by 2030. All Dubai buildings would have solar cells by 2030. The mix will gradually increase the employment of clean energy sources to 75% by 2050, making Dubai the city with the least carbon footprint city in the world.

Pan-European Energy Conversion Efforts Enlists 3D Printing and Optics Technology

The more pessimistic assessments of the global capacity to convert infrastructure to sustainable energy sources are, in some ways, the result of very limited thinking, of considering conversion in terms of existing technology. However, an ambitious effort in Europe, the iNSPiRe project, is offering an alternative way of looking at future prospects for infrastructure conversion and new construction that will rely on sustainable energy sources and groundbreaking new technologies — and 3D printing will most certainly play a major role.

RDB-D reflector: first prototype.

RDB-D reflector: first prototype.

Austrian lighting technology company Bartenbach has joined the team of iNSPiRe, a major, pan-European energy reduction initiative. They’re addressing the problem of excessive energy consumption by conceiving of and then producing what they refer to as “systemic renovation packages,” industrial products designed specifically to be retro-fitted into extant buildings in Europe. The renovation kits will include HVAC systems, pipes and ducts, energy generation systems, and lighting and shading systems.

The iNSPiRe project is a four-year-long, joint effort initiated by the European Union (EU), funded by the European Commission (EC) and the Framework Programmes for Research and Technological Development No. 7 (FP7, an EU/EC initiative). 24 participants from various fields are collaborating to refurbish existing buildings and transform them into nearly zero-energy structures. The overall goal of the project is to reduce energy consumption for lighting by at least 50% and to cut primary energy consumption in the buildings, post-war residential and tertiary structures, to below 50 kWh/m2 per year. In many regards, the iNSPiRe project is an ambitious, progressive laboratory.

“We are going to define a process for renovation…but we are also going to develop technologies and products that will be placed on the market,” says the iNSPiRe website.

The project emphasizes the importance of converting existing structures rather than undertaking entirely new construction.

Bartenbach’s role in the iNSPiRe project is exciting! They’ve developed a new optical component that is produced additively via 3D printing thanks to Dutch 3D printed optics company LUXeXceL. The optical component — called by its manufacturer “the RDB-Downlight Reflector,” or more poetically, “an office luminary” — reflects natural light and directs it to needed interior areas. The reflectors eliminate the need for illumination in hallways, on floors, and walls. Obviously, they save money and also reduce light pollution.

Each luminary is custom-made using 3D modeling and features multiple facets. The initial panel of 12 luminaries will take two weeks to print from a material LUXeXceL calls “LUX Opticlear.” Once printed, the luminaries are coated with a layer of aluminum, which partners with the faceting to optimize and direct reflection.

Reflector disposition in symmetric and asymmetric application.

Reflector disposition in symmetric and asymmetric application.

The completed reflector panel is destined for the Tosoni Office Building in Verona, Italy. Bartenbach envisions the luminary panels being applied parallel to buildings’ facades and also on ceilings. More exciting still, they will be working with other partners in the iNSPiRe project to integrate the reflectors with acoustic plus heating and cooling panels to create an overall “energy Kit 6, a multi-functional ceiling panel.” There are multiple possible configurations of the luminaries depending upon a given location, so integrating them with other components with differing functions is completely plausible.

This impressive project makes clear that 3D printing will be playing an integral role not only in the iNSPiRe collaboration, but in helping to, quite literally, illuminate a bright new path forward toward a sustainable, not-so-distant future.

What do you think about this initiative? Let us know if you think iNSPiRe is on the right track in the 3D Printed Reflector forum thread over at 3DPB.com.

lux